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Abstract

This paper proposes a new class of copula-based dynamic models for high-dimensional conditional

distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed models

draw on successful ideas from the literature on modeling high-dimensional covariance matrices and on

recent work on models for general time-varying distributions. Our use of copula-based models enables the

estimation of the joint model in stages, greatly reducing the computational burden. We use the proposed new

models to study a collection of daily credit default swap (CDS) spreads on 100 U.S. firms over the period

2006 to 2012. We find that while the probability of distress for individual firms has greatly reduced since

the financial crisis of 2008-09, the joint probability of distress (a measure of systemic risk) is substantially

higher now than in the pre-crisis period.
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1 Introduction

Systemic risk can be broadly defined as the risk of distress in a large number of firms or institutions.

It represents an extreme event in two directions: a large loss (e.g., corresponding to a large left-tail

realization for stock returns), across a large proportion of the firms. It differs from “systematic”

risk in that the latter is usually taken to refer to the exposure of an asset to a general market risk, and

carries no reference to the size, direction, and prevalence that is inherent in a notion of “systemic”

risk. There are a variety of methods for studying risk and dependence for small collections of

assets (see Patton (2013) for a recent review) but a paucity of methods for studying dependence

between a large collection of assets, which is required for a general analysis of systemic risk.

Some existing methods for estimating systemic risk simplify the task by reducing the dimension

of the problem to two: an individual firm and a market index. The “CoVaR” measure of Adrian

and Brunnermeier (2014), for example, uses quantile regression to estimate a lower tail quantile

(e.g., 0.05) of market returns conditional on a given firm having a return equal to its lower tail

quantile. The “marginal expected shortfall” proposed by Brownlees and Engle (2015) estimates the

expected return on a firm conditional on the market return being below some low threshold. These

methods have the clear benefit of being parsimonious, but by aggregating the “non firmi” universe

to a single market index, useful information about systemic risk may be missed. For example,

firm i may impact a sizeable subset of the other firms, but fall short of precipitating a market-wide

event. The objective of this paper is to provide models that can be used to handle large collections

of variables, and facilitate the estimation of a wider variety of systemic risk measures.

We use Sklar’s theorem (see Nelsen, 2006), with an extension to conditional distributions from

Patton (2006), to decompose the conditional joint distribution of a collection ofN variables,Yt =

1
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[Y1t, ...,YNt]
′ , into their marginal distributions and a conditional copula:

Yt|Ft−1 ∼ Ft = Ct (F1t, ..., FNt) (1)

We propose new models for the time-varying conditional copula,Ct, that can be used to link models

of the conditional marginal distributions (e.g., ARMA-GARCH models) to form a dynamic con-

ditional joint distribution. Of central relevance to this paper are cases whereN is relatively large,

around 50 to 250. In such cases, models that have been developed for low dimension problems

(say,N < 5) are often not applicable, either because no generalization beyond the bivariate model

exists, or because such generalizations are too restrictive (e.g., Archimedean copulas have just one

or two free parameters regardless ofN, which is clearly very restrictive in high dimensions), or

because the obvious generalization of the bivariate case leads to a proliferation of parameters and

unmanageable computational complexity. In high-dimensional applications, the challenge is to

find a balance of flexibility and parsimony.

This paper makes two contributions. First, we propose a flexible and feasible model for cap-

turing time-varying dependence in high dimensions. Our approach draws on successful ideas from

the literature on dynamic modeling of high-dimensional covariance matrices and on recent work

on models for general time-varying distributions. In particular, we combine the “GAS” model of

Creal,et al. (2011, 2013) and the factor copula model of Oh and Patton (2015) to obtain a flexi-

ble yet parsimonious dynamic model for high-dimensional conditional distributions. This model

is generally only estimable using numerical optimization techniques, and we propose a “variance

targeting” (Engle and Mezrich (1996) and Engle (2002)) type estimator to dramatically reduce

the dimension of the optimization problem. We show that this estimation method is a form of

(nonlinear) GMM, and thus can be treated as part of a multi-stage GMM estimation of the entire

model. A realistic simulation study confirms that our proposed models and estimation methods
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have satisfactory properties for relevant sample sizes.

Our second contribution is a detailed study of a collection of 100 daily credit default swap

(CDS) spreads on U.S. firms. The CDS market has expanded enormously over the last decade,

growing 40-fold from $0.6 trillion of gross notional principal in 2001 to $25.9 trillion at the end of

2011 according to the International Swaps and Derivatives Association (ISDA), yet it has received

relatively little attention, compared with equity returns, in the econometrics literature. (Interest is

growing, however, see Conrad,et al. (2011), Creal,et al. (2014), Christoffersen,et al. (2013),

Lucas,et al. (2014) and Creal and Tsay (2014) for recent work on CDS data.) We use our model of

CDS spreads to provide insights into systemic risk, as CDS spreads are tightly linked to the health

of the underlying firm. We find that systemic risk rose during the financial crisis, unsurprisingly.

More interestingly, we also find that systemic risk remains high relative to the pre-crisis period,

even though idiosyncratic risk has fallen.

The remainder of the paper is structured as follows. Section 2 presents a dynamic copula model

for high-dimensional applications, and Section 3 presents a simulation study for the proposed

model and estimation method. In Section 4 we present estimation results for various models of

CDS spreads. Section 5 applies the model to estimate time-varying systemic risk, and Section 6

concludes. Technical details and some additional results are presented in an internet appendix.

2 A dynamic copula model for high dimensions

In this section we describe our approach for capturing dynamics in the dependence between a

relatively large number of variables. (A review of alternative methods from the small but growing

literature on this topic is presented in Section 2.5.) We consider a class of data generating processes

(DGPs) that allow for time-varying conditional marginal distributions, e.g., dynamic conditional
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means and variances, and also possibly time-varying higher-order moments:

Yt ≡ [Y1t, ...,YNt]
′ (2)

where Yit = μit(φi,0) + σit(φi,0)ηit , i = 1,2, ...,N

ηit |Ft−1 ∼ Fit(φi,0)

whereμit is the conditional mean ofYit , σit is the conditional standard deviation, andFit(φi,0) is

a parametric distribution with zero mean and unit variance. We will denote the parameters of the

marginal distributions asφ ≡
[
φ′1, ...,φ

′
N

]′ , the parameters of the copula asγ, and the vector of all

parameters asθ ≡
[
φ′,γ′

]′ . We assume thatFit is continuous and strictly increasing, which fits our

empirical application, though this assumption can be relaxed. The information set is taken to be

Ft = σ (Yt,Yt−1, ...) . Define the conditional probability integral transforms of the data as:

Uit ≡ Fit

(
Yit − μit(φi,0)

σit(φi,0)
;φi,0

)

, i = 1,2, ...,N (3)

Then the conditional copula ofYt|Ft−1 is equal to the conditional distribution ofUt|Ft−1:

Ut|Ft−1 ∼ Ct(γ0) (4)

By allowing for a time-varying conditional copula, the class of DGPs characterized by equa-

tions (2) to (4) is a generalization of those considered by Chen and Fan (2006), for example,

however the cost of this flexibility is the need to specify parametric marginal distributions. In con-

trast, Chen and Fan (2006), Rémillard (2010) and Oh and Patton (2013) allow for nonparametric

estimation of the marginal distributions. The parametric margin requirement arises as the asymp-

totic distribution theory for a model with nonparametric margins and a time-varying copula is not

yet available in the literature. We attempt to mitigate this requirement in our empirical work by

using flexible models for the marginal distributions, which are allowed to differ for each variable,

and conducting goodness-of-fit tests to verify that they provide a satisfactory fit to the data.
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2.1 Factor copulas

In high-dimensional applications a critical aspect of any model is imposing some form of dimen-

sion reduction. A widely-used method to achieve this in economics and finance is to use a factor

structure. Oh and Patton (2015) propose using a factor model with flexible distributions to obtain

a flexible class of “factor copulas.” A one-factor version of their model is the copula for the latent

vector random variableXt ≡ [X1t, ...,XNt]
′ implied by the following structure:

Xit = λit
(
γλ

)
Zt + εit , i = 1,2, ...,N (5)

where Zt ∼ Fzt

(
γz

)
, εit ∼ iid Fεt

(
γε

)
, Zt⊥⊥εit ∀ i

whereFzt

(
γz

)
andFεt

(
γε

)
are flexible parametric univariate distributions for the common factor

and the idiosyncratic variables, andλit
(
γλ

)
is a potentially time-varying weight on the common

factor. The collection of all copula parameters isγ ≡
[
γ′z,γ

′
ε,γ

′
λ

]′
. The conditional joint distribution

for Xt can be decomposed into its conditional marginal distributions and its conditional copula via

Sklar’s theorem (see Nelsen (2006)) for conditional distributions, see Patton (2006):

Xt ∼ Gt= Ct (G1t (γ) , ...,GNt (γ) ;γ) (6)

Note that only thecopula of these latent variables, denotedCt (γ) , is used as a model for the

copula of the observable dataYt; the marginal distributions ofXt neednot be the same as the

marginal distributions of the observed data. (These marginals,Git , are effectively discarded.) If we

impose that the marginal distributions of the observable data are also driven by the factor structure

in equation (5), then we would also use the implied marginal distributions, and this approach then

becomes a standard factor model for a vector of variables. However, Oh and Patton (2015) propose

imposing the factor structure only on the component of the multivariate model where dimension

reduction is critical, namely the copula, and allow the marginal distributions to be modeled using

5
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a potentially different approach. In this case, the factor structure in equation (5) is used only for

the copula that it implies, and this becomes a “factor copula” model.

The copula implied by equation (5) is known in closed form for only a few particular combi-

nations of choices ofFz andFε (the most obvious example being where both of these distributions

are Gaussian, in which case the implied copula is also Gaussian). For general choices ofFz and

Fε the copula ofX will not be known in closed form, and thus the copula likelihood is not known

in closed form. Numerical methods can be used to overcome this problem. Oh and Patton (2013)

propose simulated method of moments-type estimation of the unknown parameters, however their

approach is only applicable when the conditional copula is constant. A key objective of this paper

is to allow the conditional copula to vary through time and so an alternate estimation approach is

desirable. We use a simple numerical integration method, described in detail in the internet ap-

pendix, to overcome the lack of closed-form likelihood. This numerical integration exploits the

fact that although the copula isN-dimensional, we need only integrate out the common factor,

which is one-dimensional in the structure above.

Also, analogous to this issue in other latent factor models, the copula implied by equation (5)

is only identified up to the sign of the loadings(λit) and the sign of the common factor(Zt) . That

is, for a given set of loadings and common factor distribution, an identical copula can be obtained

by switching the signs of all loadings and by flipping the distribution ofZt around zero. In some

applications, this issue can complicate interpreting the parameters of the factor model. In our

application, we exploit the fact that all of the variables are positively related, and we thus impose

that the factor loadings are all positive.

Dynamics in the factor copula model in equation (5) arise by allowing the loadings on the

common factor,λit , to vary through time, and/or by allowing the distributions of the common factor

and the idiosyncratic variables to change through time. For example, holdingFzt andFεt fixed,

6
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an increase in the factor loadings corresponds to an increase in the level of overall dependence

(e.g., rank correlation) between the variables. Holding the factor loadings fixed, an increase in

the thickness of the tails of the distribution of the common factor increases the degree of tail

dependence. In the next section we describe how we model these dynamics.

2.2 Generalized autoregressive score dynamics

An important feature of any dynamic model is the specification for how the parameters evolve

through time. Some specifications, such as stochastic volatility models (see Shephard (2005) for

example) and related stochastic copula models (see Hafner and Manner (2012) and Manner and

Segers (2011)) allow the varying parameters to evolve as a latent time series process. Others, such

as ARCH-type models for volatility (see Engle, 1982) and related models for copulas (see Patton

(2006), Jondeau and Rockinger (2006), and Creal,et al. (2013) for example) model the varying

parameters as some function of lagged observables. An advantage of the latter approach over the

former, especially for high-dimensional applications, is that it avoids the need to “integrate out”

the innovation terms driving the latent time series processes.

Within the class of ARCH-type models (“observation driven”, in the terminology of Creal,et

al. (2013)), the question ofwhichfunction of lagged observables to use as a forcing variable in the

evolution equation for the varying parameter arises. For models of the conditional variance, an ob-

vious choice is the lagged squared residual, as in the ARCH model, but for models with parameters

that lack an obvious interpretation the choice is less clear. We adopt the generalized autoregressive

score (GAS) model of Creal,et al. (2013) to overcome this problem. (Harvey (2013) and Harvey

and Sucarrat (2014) propose a similar method for modeling time-varying parameters, which they

call a “dynamic conditional score,” or “DCS,” model.) These authors propose using the lagged

score of the density model (copula model, in our application) as the forcing variable. Specifically,

7
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for a copula with time-varying parameterδt, governed by fixed parameterγ, we have:

Let Ut|Ft−1 ∼ C(δt (γ))

then δt = ω + Bδt−1 + Ast−1 (7)

where st−1 = St−1∇t−1

∇t−1 =
∂ logc(ut−1; δt−1)

∂δt−1

andSt is a scaling matrix, e.g., the inverse Hessian or its square root. (The specification for the

dynamics of the parameterδt can also be generalized to include observable variables, similar to

the GARCH-X (Brenneret al., 1996) extension of a GARCH model, see De Lira Salvatierra and

Patton (2014), although we do not pursue that here.) If the copula likelihood is not available in

closed form, as is generally the case with factor copulas, then the vector∇t can be obtained via

numerical differentiation.

While this specification for the evolution of a time-varying parameter is clearly somewhat ar-

bitrary, Creal,et al. (2013) motivate it by showing that it nests a variety of popular and successful

existing models: GARCH (Bollerslev (1986)) for conditional variance; ACD (Engle and Russell

(1998)) for models of trade durations (the time between consecutive high frequency observations);

Davis, et al.’s (2003) model for Poisson counts. In recent work, Blasques,et al. (2014a) show

that the GAS model can be motivated information-theoretically, by showing that this approach

minimizes the local Kullback-Liebler divergence between the true conditional density and the

model-implied density, and Harvey (2013) motivates this specification as an approximation to a

filter for a model driven by a stochastic latent parameter, or an “unobserved components” model.

Finally, the recursion above can also be interpreted as the steepest ascent direction for improving

the model’s fit, in terms of the likelihood, given the current value of the model parameterδt, similar

8
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to numerical optimization algorithms such as the Gauss-Newton algorithm.

2.3 High-dimensional factor copulas with GAS dynamics

We employ the GAS model to allow for time variation in the factor loadings in the factor copula im-

plied by equation (5), but to keep the model parsimonious we impose that the parameters governing

the “shape” of the common and idiosyncratic variables (γz andγε) are constant. We use the skewed

t distribution of Hansen (1994) as the model forFz. This distribution has two shape parameters,

a degrees of freedom parameter(νz ∈ (2,∞]) and an asymmetry parameter
(
ψz ∈ (−1,1)

)
, and it

simplifies to the standardizedt distribution whenψ = 0. We use the standardizedt distribution as

the model forFε for simplicity.

The general GAS framework in equation (7) applied to the factor loadings(λit) in equation (5),

would imply N + 2N2 parameters governing their evolution, which represents an infeasibly large

number for even moderate values ofN. To keep the model parsimonious, we adopt a simplification

from the DCC model of Engle (2002), and impose that the coefficient matrices (B and A) are

diagonal with a scalar parameter (β andα respectively) on the diagonal. To avoid the estimation of

anN×N scaling matrix we setSt = I . In our empirical application below, we found slightly better

results from modeling logλit , thereby imposing positive weights, than from modelingλit directly.

We thus employ a GAS model for the log factor loadings, but the use of the logarithm here is not

essential to our empirical approach.

logλit = ωi + β logλi,t−1 + αsi,t−1, i = 1,2, ...,N (8)

wheresit ≡ ∂ logc(ut; λt, νz, ψz, νε)/∂ logλit andλt ≡ [λ1t, ..., λNt]
′ .

The dynamic copula model implied by equations (5) and (8) containsN + 2 parameters for

the GAS dynamics, 3 parameters for the shape of the common and idiosyncratic variables, for a

9
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total of N + 5 parameters. Numerically optimizing this model whenN = 50 or 100 represents

quite a computational challenge. We propose a method to overcome this challenge by adapting an

idea from the DCC model of Engle (2002), known as “variance targeting.” The nature of our GAS

specification means that the variance targeting approach needs to be modified for use here.

The evolution equation forλit in equation (8) can be re-written as

logλit = E
[
logλit

]
(1− β) + β logλi,t−1 + αsi,t−1 (9)

using the result from Creal,et al. (2013) thatEt−1 [sit ] = 0, and soE
[
logλit

]
= ωi/ (1− β) . The

proposition below provides a method for using sample rank correlations to obtain an estimate of

E
[
logλit

]
, which eliminates the need to numerically optimize over the intercept parameters,ωi .

The proposition is based on the following assumption.

Assumption 1 (a) The conditional copula ofYt|Ft−1 is the time-varying factor copula given in

equations (5) and (8).

(b) The process{λt} generated by equation (8) is strictly stationary.

(c) Letρt,X ≡ vech(RankCorrt−1 [Xt]) . Thenlogλt is a linear function ofρt,X.

(d) Letρi j,X ≡ RankCorr
[
Xi ,Xj

]
andρL

i j,X ≡ Corr
[
Xi ,Xj

]
. Then, for fixed values of

(
γz,γε

)
,

the mappingρi j,X = ϕ(ρL
i j,X) is strictly increasing.

Part (a) of this assumption makes explicit that the copula of the data is the GAS-factor copula

model, and so the conditional copula ofYt|Ft−1 is the same as that ofXt|Ft−1. Blasques,et al.

(2014b) provide conditions under which univariate GAS models satisfy stationarity conditions,

and Blasques,et al. (2014a) provide results for GAS models with a vector dependent variable

but a scalar time-varying parameter; corresponding theoretical results for our multivariate case are

not yet available in the literature, and in part (b) we simply assume that stationarity holds. Part

(c) formalizes the applicability of a Taylor series expansion of the function mappingρt to λt. In

10
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practice this assumption will hold only approximately, and its applicability needs to be verified via

simulation, which we discuss further in Section 3 and in the internet appendix. Part (d) enables us

to map rank correlations to linear correlations. Note that we can take
(
γz,γε

)
as fixed, as we call

this mapping for each evaluation of the log-likelihood. Importantly, this mapping can be computed

prior to estimation, and then just called during estimation, rather than re-computed each time the

likelihood function is evaluated, which greatly speeds up estimation.

Proposition 1 Let Assumption 1 hold, and denote the vech of the rank correlation matrix of the

standardized residuals,ηt, as ρ̄η and its sample analog aŝρη. Then:

(i) E
[
logλt

]
= H

(
ρ̄η

)
, where H is defined in equation (25).

(ii) ̂logλ = H
(
ρ̂η

)
is a GMM estimator of E

[
logλt

]
.

The proof of this proposition is in the appendix. Part (i) of the above proposition provides

the mapping from the population rank correlation of the standardized residuals to the mean of the

(log) factor loadings, which is the basis for considering a variance-targeting type estimator. Part (ii)

shows that the sample analog of this mapping can be interpreted as a standard GMM estimator. This

is useful as it enables us to treat the estimation of the complete vector of parameters as multi-stage

GMM. Under standard regularity conditions, this can be shown to yield consistent and asymptoti-

cally normal parameter estimates (see White (1994), Engle and Sheppard (2001), and in particular

Newey and McFadden, 1994, Theorem 6.1). That is, if we letθ̂MS-GMM≡ [φ̂
′
MS-GMM, γ̂

′
MS-GMM]′

denote the collection of all estimated parameters, then

√
T

(
θ̂MS-GMM−θ

∗
) d
→ N

(
0,V∗MS-GMM

)
asT → ∞ (10)

Consistent estimation ofV∗MS-GMM is theoretically possible, however in high dimensions it is not

computationally feasible. Gonçalveset al. (2013) provide conditions under which a block boot-

strap may be used to obtain valid standard errors on parameters estimated via multi-stage GMM.
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The resulting standard errors are not higher-order efficient, like some bootstrap inference methods,

but they do enable us to avoid having to handle Hessian matrices of size on the order ofN × N.

Note that sample rank correlations cannot in general be considered as moment-based estimators,

as they depend on the sample ranks of the observed data, and studying their estimation properties

requires alternative techniques. However, we exploit the fact that the marginal distributions of the

data are known up to an unknown parameter vector, and thus rank correlation can be obtained as a

sample moment of a nonlinear function of the data.

2.4 Equidependence vs. heterogeneous dependence

To investigate whether we can further reduce the number of free parameters in this model we con-

sider two restrictions of the model in equation (8), motivated by the “dynamic equicorrelation”

model of Engle and Kelly (2012). If we impose thatωi = ω ∀ i, then the pair-wise dependence be-

tween each of the variables will be identical, leading to a “dynamic equidependence” model. (The

copula implied by this specification is “exchangeable” in the terminology of the copula literature.)

In this case we have only six parameters to estimate, independent of the number of variablesN,

vastly reducing the estimation burden, but imposing a lot of homogeneity on the model.

An intermediate step between the fully flexible model and the equidependence model is to

group the assets using someex anteinformation (e.g., by industry) and impose homogeneity only

within groups. This leads to a “block equidependence” copula model, with

Xit = λg(i),tZt + εit , i = 1,2, ...,N (11)

logλg,t = ωg + β logλg,t−1 + αsg,t−1, g = 1,2, ...,G

whereg (i) is the group to which variablei belongs, andG is the number of groups. In this case
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the number of parameters to estimate in the copula model isG+5. In our empirical application we

haveN = 100 and we consider grouping variables intoG = 5 industries, meaning this model has

10 parameters to estimate rather than 105. In our empirical analysis below, we compare these two

restricted models(G = 1 andG = 5) with the “heterogeneous dependence” model which allows a

different factor for each variable (and soG = N).

2.5 Other models for dynamic, high-dimensional copulas

As noted above, the literature contains relatively few models for dynamic, high-dimensional, cop-

ulas. Exceptions to this are discussed here. Lucas,et al. (2014) combine GAS dynamics with a

skewedt copula to model ten sovereign CDS spreads. A similar model, though with an alterna-

tive skewt specification and with Engle’s (2002) DCC dynamics, is used by Christoffersen,et al.

(2012, 2013). The former of these two papers analyzes equity returns on up to 33 national stock

indices, while the latter studies weekly equity returns and CDS spreads on 233 North American

firms (and is the largest time-varying copula model in the extant literature). Creal and Tsay (2014)

propose a stochastic copula model based on a factor structure, and use Bayesian estimation meth-

ods to apply it to an unbalanced panel of CDS spreads and equity returns on 100 firms. Almeida

et al. (2012) use “vine” copulas to model the dependence between 30 German stock return series,

with dynamics captured through a stochastic volatility-type equation for the parameters of the cop-

ula. Sẗober and Czado (2012) also use vine copulas, combined with a regime-switching model for

dynamics, to model dependence between ten German stock returns.
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3 Simulation study

This section presents an analysis of the finite sample properties of maximum likelihood estimation

for factor copulas with GAS dynamics. Factor copulas do not have a closed-form likelihood, and

we approximate the likelihood using standard numerical integration methods, details of which can

be found in the internet appendix.

We consider three different copula models for the Monte Carlo simulation: a dynamic equide-

pendence model(G = 1), a dynamic block equidependence model(G = 10), and a dynamic het-

erogeneous dependence model(G = N), all of them governed by:

Xit = λg(i),tZt + εit , i = 1,2, ...,N (12)

logλg,t = ωg + β logλg,t−1 + αsg,t−1, g = 1,2, ...,G

Z ∼ S kew t
(
νz, ψz

)

εi ∼ iid t (νε) , andεi⊥⊥Z ∀ i

We setN = 100 to match the number of series in our empirical application below. For simplicity,

we impose thatνz = νε, and we estimateν−1 rather thanν, so that Normality is nested atν−1 = 0

rather thanν → ∞. Broadly matching the parameter estimates we obtain in our empirical appli-

cation, we setω = 0, β = 0.98, α = 0.05, ν = 5, andψz = 0.1 for the equidependence model.

The block equidependence model uses the same parameters but setsω1 = −0.03 andω10 = 0.03,

and withω2 to ω9 evenly spaced between these two bounds, and the heterogeneous dependence

model similarly usesω1 = −0.03 andω100 = 0.03, with ω2 to ω99 evenly spaced between these

two bounds. Rank correlations implied by these values range from 0.1 to 0.7. With these choices

of parameter values and dependence designs, various dynamic dependence structures are covered,

and asymmetric tail dependence, which is a common feature of financial data, is also allowed. We
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use a sample size ofT = 500 and we repeat each simulation 100 times.

The results for the equidependence model presented in Panel A of Table 1 reveal that the aver-

age estimated bias for all parameters is small, and the estimates are centered on true values. The

results for the block equidependence model, presented in Panel B, are also satisfactory, and, as ex-

pected, the estimation error in the parameters is generally slightly higher for this more complicated

model.

The heterogeneous dependence model is estimated using the variance targeting-type approach

for the intercepts,ωi , described in Section 2.3, combined with numerical optimization for the re-

maining parameters. The internet appendix presents simulation results that verify the applicability

of Assumption 1 for this model, and complete simulation results for this model are presented in

Table A1 of the internet appendix. This table confirms that the approach leads to estimators with

satisfactory finite-sample properties. The standard errors on the estimated intercept parameters

are approximately twice as large, on average, as in the block equidependence case, however this

model has seven times as many parameters as the block equidependence (104 vs. 14) and so some

loss in accuracy is inevitable. Importantly, all estimated parameters are approximately centered on

their true values, confirming that the assumptions underlying Proposition 1 are applicable for this

model.

[INSERT TABLE 1 ABOUT HERE]
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4 Data description and estimation results

4.1 CDS spreads

We apply the new dynamic copula model proposed in the previous section to daily credit default

swap (CDS) spreads, obtained from Markit. In brief, a CDS is a contract in which the seller

provides insurance to the buyer against any losses resulting from a default by the “reference entity”

within some horizon. We focus on North American corporate CDS contracts, and the reference

entities are thus North American firms. The CDS spread, usually measured in basis points and

payable quarterly by the buyer to the seller, is the cost of this insurance. See Duffie and Singleton

(2003) and Hull (2012) for more detailed discussions of CDS contracts, and see Barclays “CDS

Handbook” (2010) for institutional details.

A key reason for interest in CDS contracts is the sensitivity of CDS spreads to changes in

market perceptions of the probability of default, see Conrad,et al. (2011), Creal,et al. (2014),

Christoffersen,et al. (2013) and Liu (2014) for recent empirical studies of implied default proba-

bilities. Under some simplifying assumptions (such as a constant risk free rate and default hazard

rate) see Carr and Wu (2011) for example, it can be shown that the CDS spread in basis points is:

Sit = 1002PQit Lit (13)

whereLit is the loss given default (sometimes shortened to “LGD,” and often assumed to equal

0.6 for U.S. firms) andPQit is the implied probability of default. The same formula can also be

obtained as a first-order approximation atPQit ≈ 0 for other more complicated pricing equations.

This expression can be written in terms of the objective probability of default,PPit :

Sit = 1002PPitMit Lit (14)

whereMit is the market price of risk (stochastic discount factor). An increase in a CDS spread can
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be driven by an increase in the LGD, an increase in the market price of default risk for this firm, or

an increase in the objective probability of default. Any one of these three effects is indicative of a

worsening of the health of the underlying firm.

In the analysis below we work with the log-difference of CDS spreads, to mitigate their autore-

gressive persistence, and under this transformation we obtain:

Yit ≡ Δ logSit = Δ logPPit + Δ logMit + Δ logLit (15)

If the loss given default is constant then the third term above vanishes, and if we assume that the

market price of risk is constant (as in traditional asset pricing models) or evolves slowly (for ex-

ample, with a business cycle-type frequency) then daily changes in CDS spreads can be attributed

primarily to changes in the objective probability of default. We will use this to guide our interpre-

tation of the empirical results below, but we emphasize here that an increase in any of these three

terms represents “bad news” for firmi, and so the isolation of the objective probability of default

is not required for our interpretations to follow.

4.2 Summary statistics

Our sample period spans January 2006 to April 2012, a total of 1644 days. We study the 5-

year CDS contract, which is the most liquid horizon (see Barclays (2010)), and we use “XR”

(“no restructuring”) CDS contracts, which became the convention for North America following

the CDS market standardization in 2009 (the so-called “Big Bang”). To obtain a set of active,

economically interesting, CDS data, we took all 125 individual firms in the CDS index covering

our sample period (CDX NA IG Series 17). Of these, 90 firms had data that covered our entire

sample period, and ten firms had no more than three missing observations. We use these 100 firms

for our analysis. (Of the remaining 25 firms, six are not U.S.-based firms and one firm stopped
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trading because of a firm split. None of the firms defaulted over this sample period.) We note here

that Markit selects CDS contracts for inclusion in CDX indices based on their liquidity (Markit,

2015) not on their broader “representativeness,” in some sense, and so the results presented below

are representative of those for liquid CDS contracts, not necessarily for all CDS contracts, or all

firms.

A plot of the CDS spreads used in our analysis is presented in Figure 1, which reveals that the

average CDS spread was around 100 basis points (bps), and it varied from a low (averaged across

firms) of 24 bps on February 22, 2007, to a high of 304 bps on March 9, 2009.

[INSERT FIGURE 1 ABOUT HERE ]

The levels of our CDS spread data are suggestive of a large autoregressive root, with the me-

dian first-order autocorrelation across all 100 series being 0.996 (the minimum is 0.990). Further,

augmented Dickey-Fuller tests reject the null hypothesis of a unit root at the 0.05 level for only

12 series. Like interest rate time series, these series are unlikely to literally obey a random walk,

as they are bounded below, however we model all series in log differences to avoid the need to

consider these series as near unit root processes.

Table 2 presents summary statistics on our log-differenced data. Of particular note is the pos-

itive skewness of the log-differences in CDS spreads (average skewness is 1.087, and skewness

is positive for 89 out of 100 series) and the excess kurtosis (25.531 on average, and greater than

3 for all 100 firms). Ljung-Box tests for autocorrelation at up to the tenth lag find significant (at

the 0.05 level) autocorrelation in 98 out of 100 of the log-differenced CDS spreads, and for 89

series significant autocorrelation is found in the squared log-differences. This motivates specifying

models for the conditional mean and variance to capture this predictability.

[ INSERT TABLE 2 ABOUT HERE ]
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4.3 Conditional mean and variance models

Daily log-differences of CDS spreads have more autocorrelation than is commonly found for daily

stock returns (e.g., the average first-order autocorrelation is 0.161) and so the model for the con-

ditional mean of our data needs more structure than the commonly-used constant model for daily

stock returns. We use an AR(5) model, and augment it with a lag of the market variable (an equal-

weighted average of all 100 series) to capture any dynamic spillover effects. We show below that

this model passes standard specification tests.

Yit = φ0i +

5∑

j=1

φ j,iYi,t− j + φm,iYm,t−1 + eit (16)

For the market return we use the same model (omitting, of course, a repeat of the first lag of the

market return). We need a model for the market return as we use the residuals from the market

return model in our conditional variance specification.

Our model for the conditional variance is the asymmetric volatility model of Glosten,et al.

(1993), the “GJR-GARCH” model. The motivation for the asymmetry in this model is that “bad

news” about a firm increases its future volatility more than good news. For stock returns, bad

news comes in the form of a negative residual. For CDS spreads, on the other hand, bad news is

a positiveresidual, and so we reverse the direction of the indicator variable in the GJR-GARCH

model to reflect this. In addition to the standard GJR-GARCH terms, we also include terms relating

to the lagged market residual:

Vt−1 [eit ] ≡ σ2
it = ωi + βiσ

2
i,t−1 + αie

2
i,t−1 + δie

2
i,t−11

{
ei,t−1 > 0

}
(17)

+αm,ie
2
m,t−1 + δm,ie

2
m,t−11

{
em,t−1 > 0

}

Finally, we specify a model for the marginal distribution of the standardized residuals,ηit . We

use the skewedt distribution of Hansen (1994), which allows for non-zero skewness and excess
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kurtosis:

ηit ≡
eit

σit
∼ iid S kew t

(
νi , ψi

)
(18)

Table 3 summarizes the results of estimating the above models on the 100 time series. For

the conditional mean model, we find strong significance of the first three AR lags, as well as the

lagged market return. The conditional variance models reveal only mild statistical evidence of

asymmetry in volatility, however the point estimates suggest that “bad news” (a positive residual)

increases future volatility about 50% more than good news. The average estimated degrees of

freedom parameter is 3.6, suggestive of fat tails, and the estimated skewness parameter is positive

for 94 firms, and significantly different from zero for 41 of these, indicating positive skewness.

We now discuss goodness-of-fit tests for the marginal distribution specifications. We firstly use

the Ljung-Box test to check the adequacy of these models for the conditional mean and variance,

and we are able to reject the null of zero autocorrelation up to the tenth lag for only nine of the

residual series, and only two of the squared standardized residual series. We conclude that these

models provide a satisfactory fit to the conditional means and variances of these series. Next,

we use the Kolmogorov-Smirnov test to investigate the fit of the skewedt distribution for the

standardized residuals, using 100 simulations to obtain critical values that capture the parameter

estimation error, and we reject the null of correct specification for eleven of the 100 firms. This is

slightly higher than the level of the test (0.05), but we do not pursue the use of a more complicated

marginal distribution model for those eleven firms in the interests of parsimony and comparability.

[ INSERT TABLE 3 ABOUT HERE ]
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4.4 The CDS “Big Bang”

On April 8, 2009, the CDS market underwent changes driven by a move towards more standard-

ized CDS contracts. Details of these changes are described in Markit (2009). It is plausible that the

changes to the CDS market around this so-called “Big Bang” changed the dynamics and distribu-

tional features of CDS time series, and we test for that possibility here. We do so by allowing the

parameters of the mean, variance, and marginal distribution models to change on the date of the

Big Bang, and we test the significance of these changes. We have 591 pre-break observations and

1053 post-break observations. (It is worth noting that the turmoil in financial markets in 2007-09

makes identifying any single event as a source of a structural break almost impossible. We have

good reason to suspect that the Big Bang led to a structural break, but it is possible that a better

break date, in terms of model fit, is earlier or later than the date we use.)

We find that the conditional mean parameters changed significantly (at the 0.05 level) for 39

firms, and the conditional variance and marginal density shape parameters changed significantly

for 66 firms. In what follows, the results we report are based on models that allow for a structural

break in the mean, variance and distribution parameters. Given the prevalence of these changes,

all of the copula models we consider allow for a break at the date of the Big Bang.

4.5 Comparing models for the conditional copula

The class of high-dimensional dynamic copula models described in Section 2 includes a variety of

possible specifications: static vs. GAS dynamics; normal vs. skewt-t factor copulas; equidepen-

dence vs. block equidependence vs. heterogeneous dependence.

Table 4 presents results for six different dynamic models (a corresponding table for the six

static copula models is available in the internet appendix). Bootstrap standard errors are presented
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in parentheses below the estimated parameters. (We use the stationary block bootstrap of Politis

and Romano (1994) with an average block length of 120 days, applied to the log-difference of the

CDS spreads, and we use 100 bootstrap replications.) Similar to other applications of GAS models

(see, Crealet al. (2011, 2013)) we find strong persistence, with theβ parameter ranging from 0.85

to 0.99. (Note that theβ parameter in GAS models plays the same role asα + β in a GARCH(1,1)

model, see Example 1 in Creal,et al. (2013)). We also find that the inverse degrees of freedom

parameters are greater than zero (i.e., the factor copula is not Normal), which we test formally

below. For the two more parsimonious models, we do not find the common factor to be significantly

asymmetrically distributed, but for our preferred model based on heterogeneous dependence, we

find that the asymmetry parameter for the common factor is positive, and significantly so in the

post-break period, indicating greater dependence for joint upward moves in CDS spreads. This

is consistent with financial variables being more correlated during bad times: for stock returns

bad times correspond to joint downward moves, which have been shown in past work to be more

correlated than joint upward moves, while for CDS spreads bad times correspond to joint upward

moves.

[ INSERT TABLE 4 ABOUT HERE ]

Table 4 shows that the estimated degrees of freedom parameter for the common factor is larger

than that for the idiosyncratic term. Oh and Patton (2015) show that when these two parameters

differ the tail dependence implied by this factor copula is on the boundary: either zero (νz > νε)

or one (νz < νε); only when these parameters are equal can tail dependence lie inside(0,1) . We

test the significance of the difference between these two parameters by estimating a model with

them imposed to be equal and then conducting a likelihood ratio test, the log-likelihoods from

these two models are reported in Table 5. The results strongly suggest thatνz > νε, and thus that
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extreme movements in CDS spreads are uncorrelated. The average gain in the log likelihood from

estimating just this one extra parameter is around 200 points. This does not mean, of course, that

“near extreme” movements must be uncorrelated, only that they are uncorrelated in the limit.

Table 5 also presents a comparison of the Skewt-t factor copula with the Normal copula,

which is obtained by using a Normal distribution for both the common factor and the idiosyncratic

factor. We see very clearly that the Normal copula performs worse than the Skewt-t factor copula,

with the average gain in the log likelihood of the more flexible model being over 2000 points.

This represents yet more evidence against the Normal copula model for financial time series; the

Normal copula is simply too restrictive.

[ INSERT TABLE 5 ABOUT HERE ]

Finally, Table 5 can be used to compare the results from models with three different degrees of

heterogeneity: equidependence vs. block equidependence vs. heterogeneous dependence. We see

that the data support the more flexible models, with the block equidependence model improving

on the equidependence model by around 200 points, and the heterogeneous model improving on

the block equidependence model by around 800 points. It should be noted that our use of industry

membership to form the “blocks” is just one method, and alternative grouping schemes may lead

to better results. We do not pursue this possibility here.

Given the results in Table 5, our preferred model for the dependence structure of these 100 CDS

spread series is a skewt-t factor copula, with separate degrees of freedom for the common and

idiosyncratic variables, allowing for a separate loading on the common factor for each series (the

“heterogeneous dependence” model) and allowing for dynamics using the GAS structure described

in the previous section. Figure 2 presents the time-varying factor loadings implied by this model,

summarized by averaging the loadings across all firms in the same industry. Figure A2 in the
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internet appendix presents corresponding averages of all pair-wise correlations between firms in

the same pairs of industries. (Thus the plotted factor loadings and rank correlations are smoother

than any individual rank correlation plot.) Also presented in Figure A2 are 60-day rolling window

rank correlations, again averaged across pairs of the firms in the same pair of industries. This

figure reveals a secular increase in the correlation between CDS spreads, rising from around 0.1

in 2006 to around 0.5 in 2013. Interestingly, rank correlations donot appear to spike during the

financial crisis, unlike individual volatilities and probabilities of default; rather they continue a

mostly steady rise through the sample period.

[ INSERT FIGURE 2 ABOUT HERE ]

5 Time-varying systemic risk

In this section we use the dynamic multivariate model presented above to obtain estimates of

measures of systemic risk. In many recent studies, systemic risk is taken to refer to breakdowns

of the financial system, but in this paper we use a broader definition in which systemic risks can

afflict any given system, including those that include both financial and non-financial firms. Also

note that while the factor structure employed in the copula model in equations (5)-(6) is similar to

(and, indeed, in part inspired by) common models for capturingsystematicrisk, we use our model

to studysystemicrisk by looking at its implications for measures of the probability of large crashes

across a large proportion of the firms under analysis.

A variety of measures of systemic risk have been proposed in the literature to date. One in-

fluential measure is “CoVaR,” proposed by Adrian and Brunnermeier (2014), which uses quantile

regression to estimate the lower tail (e.g., 0.05) quantile of market returns conditional on a given

firm having a return equal to its lower tail quantile. This measure provides an estimate of how
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firm-level stress spills over to the market index. An alternative measure is “marginal expected

shortfall” (MES) proposed by Brownlees and Engle (2015), which estimates the expected return

on a firm conditional on the market return being below some low threshold. Segoviano and Good-

hart (2009) and Giesecke and Kim (2009) propose measuring systemic risk via the probability that

a “large” number of firms are in distress, Lucas,et al. (2014) use the same measure applied to

European sovereign debt. Hartmann,et al. (2006) consider a measure based on the probability of

a large number of firms being in distressconditionalon a subset of firms being in distress. Huang,

et al. (2009) suggest using the price of a hypothetical contract insuring against system-wide dis-

tress, valued using a mix of CDS and equity data, as a measure of systemic risk. Schwaab (2010)

and Bisiaset al. (2012) present reviews of these and other measures of systemic risk. Giglioet

al. (2015) consider a large collection of systemic risk measures, and show that an index based on

these measures can help to predict lower quantiles of shocks to economic growth.

We consider two different estimates of systemic risk, defined in detail in the following two

sub-sections. In all cases we use the dynamic copula model that performed best in the previous

section, namely the heterogeneous dependence factor copula model.

5.1 Joint probability of distress

The first measure of systemic risk we implement is an estimate of the probability that a large

number of firms will be in distress, similar to the measure considered by Segoviano and Goodhart

(2009), Giesecke and Kim (2009) and Lucas,et al. (2014). We define distress as a firm’s one-year-

ahead CDS spread lying above some threshold:

Di,t+250 ≡ 1
{
Si,t+250 > c∗i,t+250

}
(19)
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We choose the threshold as the 99% conditional quantiles of the individual CDS spreads. In our

sample, the average 99% threshold corresponds to a CDS spread of 339 basis points. Using equa-

tion (13) above, this threshold yields an implied probability of default (assuming LGD is 0.6) of

5.7%. (The average CDS spread across all firms is 97 basis points, yielding an implied probability

of default of 1.6%.) We also considered a threshold quantile of 0.95, corresponding to an average

CDS spread of 245 basis points, and the results are qualitatively similar.

We use the probability of a large proportion of firms being in distress as a measure of systemic

risk. We define the “joint probability of distress” as:

JPDt,k ≡ Prt







1
N

N∑

i=1

Di,t+250


 ≥

k
N


 (20)

wherek is a user-chosen threshold for what constitutes a “large” proportion of theN firms. We

usek = 30, and the results corresponding tok = 20 andk = 40 are qualitatively similar. The JPD

is only estimable via simulations from our model, and we obtain these using 10,000 simulations.

Given the computational burden, we compute estimates only every 20 trading days (approximately

once per month).

The estimated joint probability of distress is presented in Figure 3. For comparison, we also

include the JPD implied by a “baseline” copula model, the constant Normal copula. (This copula

allows for a break at the Big Bang, and so is constant only within each sub-period.) We observe

that the JPD implied by the factor copula with GAS dynamics spikes up in late 2007, roughly

doubling in value. It rises even further in early 2008, reaching a peak of around 1%. This implies

that at the height of the financial crisis, there was around a 1% chance that at least 30 of these 100

firms would be simultaneously in distress, defined as a CDS spread lying in its upper 1% tail. The

joint probability of distress declines in mid 2009, though remains somewhat higher than before the

crisis. This is consistent with results for systemic sovereign default risk in the U.S. and Europe
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reported in Ang and Longstaff (2013) and Lucas,et al. (2014).

Comparing the estimates of JPD from the two copula models, we see that the constant normal

copula estimate is almost uniformly lower than that from the factor copula in the pre-crisis period,

and substantially lower from mid 2007 until the Big Bang, when the copula parameter was allowed

to change. In the second sub-sample the two estimates are closer, although the JPD implied by the

normal copula is generally lower than from the factor copula. These two estimates of JPD reveal

the large variation in estimates of systemic risk that can be obtained depending on the assumed

shape of the copula, and the assumed form of the dynamics of the copula.

[ INSERT FIGURE 3 ABOUT HERE ]

5.2 Expected proportion in distress

Our second measure of systemic risk more fully exploits the ability of our dynamic copula model

to capture heterogeneous dependence between individual CDS spread changes. For each firmi, we

compute the expected proportion of firms in distress conditional on firmi being in distress:

EPDi,t ≡ Et




1
N

N∑

j=1

Dj,t+250

∣∣∣∣∣∣∣
Di,t+250 = 1


 (21)

The minimum value this can take is 1/N, as we include firmi in the sum, and the maximum is one.

A version of this measure was proposed in Hartmann,et al. (2006). We use the same indicator for

distress as in the previous section (equation (19)). This measure of systemic risk is similar in spirit

to the CoVaR measure proposed by Adrian and Brunnermeier (2014), in that it looks at distress

“spillovers” from a single firm to the market as a whole. (Note that the summation sign in equation

(21) weights all firms equally; a simple extension would allow firms to be weighted by their market

capitalization, debt-to-equity ratio, or any other measurable characteristic of a firm.)
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In the upper panel of Figure 4 we summarize the results from the EPD estimates, and present

the average, and 20% and 80% quantiles of this measure across the 100 firms in our sample. We

observe that the average EPD is around 30% in the pre-crisis period, rising to almost 60% in late

2008, and returning to around 40% in the last year of our sample. Thus this figure, like the JPD

plot in Figure 3, is also suggestive of a large increase in systemic risk around the financial crisis,

and higher level of systemic risk in the current period than in the pre-crisis period.

[ INSERT FIGURE 4 ABOUT HERE ]

The expected proportion in distress measure enables us to identify firms that are more strongly

correlated with market-wide distress than others. When the EPD is low for a given firm, it reveals

that distress for that firm is not a signal of widespread distress, i.e., firmi is more idiosyncratic.

Conversely, when the EPD is high, it reveals that distress for this firm is a sign of widespread

distress, and so this firm is a “bellwether” for systemic risk. To illustrate the information from

individual firm EPD estimates, Table 6 below presents the top five and bottom five firms according

to their EPD on three dates in our sample period, the first day (January 2, 2006), a middle day

(January 26, 2009) and the last day (April 17, 2012). We note that SLM Corporation (“Sallie Mae”,

in the student loan business) appears in the “least systemic” group on all three dates, indicating that

periods in which it is in distress are, according to our model, generally unrelated to periods of wider

distress. Marsh and McLennan (which owns a collection of risk, insurance and consulting firms)

and Baxter International (a bioscience and medical firm) each appear in the “most systemic” group

for two out of three dates.

Table 6 also provides information on the spread of EPD estimates across firms. At the start

of our sample the least systemic firms had EPDs of 2 to 3, indicating that only one to two other

firms are expected to be in distress when they are in distress. At the end of our sample the least
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systemic firms had EPDs of 8 to 12, indicating a wider correlation of distress even among the least

correlated. A similar finding is true for the most systemic firms: the EPDs for the most systemic

firms rise from 48–53 at the start of the sample to 84–94 at the end. Thus there is a general increase

in the correlation between firm distress over this sample period.

[ INSERT TABLE 6 ABOUT HERE]

A particular focus in the growing literature on systemic risk is on spillovers of distress from

the financial sector to the nonfinancial, or “real,” sector, see Adrian and Brunnermeier (2014)

and Acharya,et al. (2010) for example. Our collection of 100 firms contains 16 financial firms

and 84 nonfinancial firms, and we can examine the “expected proportion in distress” across these

two classifications. The lower panel of Figure 4 presents estimates of the expected proportion

of financial/nonfinancial firms in distress, conditional on one financial/nonfinancial firm being in

distress. This generates four time series of EPD, and allows us to look at spillovers from one sector

to the other, and spillovers within a sector. This panel reveals substantial heterogeneity in the

sensitivity of firms to other firms being in distress. In particular, we see that a substantially higher

proportion of financial firms are expected to be in distress conditional on a nonfinancial firm being

in distress, than the other way around. At the peak of the financial crisis, these proportions were

80% and 40% respectively, and more recently have averaged around 60% and 30%. This might

be taken as somewhat reassuring, as it indicates that while the probability of distress in the “real”

sector does increase conditional on distress in the financial sector, the sensitivity is strongest in

the other direction. We also note the relatively high sensitivity of financial firms to other financial

firms being in distress, indicating some intra-industry contagion.
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6 Conclusion

Motivated by the growing interest in measures of the risk of systemic events, this paper proposes

new flexible yet parsimonious models for time-varying high-dimensional distributions. We use

copula theory to combine well-known models for univariate distributions with new models of the

conditional dependence structure (copula) to obtain dynamic joint distributions. Our proposed

new dynamic copula models can be applied in dimensions of 100 or more, which is much greater

than commonly considered in the literature. These models draw on successful ideas from the

literature on dynamic modeling of high-dimensional correlation matrices, (e.g., Engle (2002)) and

on recent work on models for general time-varying distributions (Creal,et al. (2013)). We propose

a “variance targeting” type estimator for this class of dynamic copulas to dramatically reduce the

number of parameters to be estimated by numerical optimization.

We apply our model to a detailed analysis of a collection of 100 credit default swap (CDS)

spreads on U.S. firms. The CDS market has expanded rapidly in recent years, and yields a novel

view of the health of the underlying firms. We use our model of CDS spreads to provide insights

into systemic risk, and we find, unsurprisingly, that systemic risk was highest during the financial

crisis of 2008–09. More interestingly, we also find that systemic risk has remained relatively high,

and is substantially higher now than in the pre-crisis period.

Appendix: Proof of Proposition 1

Proof of Proposition 1. (i) The evolution equation forλit in equation (8) and stationarity of

{λt} , which holds by assumption 1(b), impliesωi = E
[
logλit

]
(1− β) , and we can re-write our

GAS equation (8) in “variance targeting” form:

logλit = E
[
logλit

]
(1− β) + β logλi,t−1 + αsi,t−1 (22)
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The objective of this proposition is to find an estimate ofE
[
logλit

]
based on observable data, thus

reducing the number of parameters to be estimated numerically. Next, note that linear correlations

are given by:

ρL
i j,X ≡ Corr

[
Xi ,Xj

]
=

λiλ j
√(

1+ λ2
i

) (
1+ λ2

j

) ≡ g
(
λi , λ j

)
(23)

and RL
X ≡ Corr [X] = G (λ)

By assumption 1(a), this is an exactly- (N = 3) or over- (N > 3) identified system, as we have

N parametersλ ≡ [λ1, ..., λN]′ and N (N − 1) /2 correlations. By Assumption 1(d) we have a

corresponding exactly- or over-identified system for the Spearman rank correlation matrix:

RX = ϕ
(
RL

X

)
= ϕ (G (λ)) (24)

(In a slight abuse of notation, we letϕ
(
RL

X

)
map the entire linear correlation matrix to the rank

correlation matrix.) Define the exponential of the inverse of the functionϕ ◦ G as H, so that

logλ = H
(
ρX

)
, whereρX ≡ vech(RX). The functionH is not known in closed form but it can be

obtained by a simple and fast optimization problem:

H
(
ρX

)
= arg min

a

(
vech

{
ϕ
(
G

(
expa

))}
− ρX

)′ (vech
{
ϕ
(
G

(
expa

))}
− ρX

)
(25)

Note that under Assumption 1(a), there is no error in this optimization problem; this is just a

means of recoveringH from ϕ ◦ G. This is the GMM analog to the usual method-of-moments

estimator used in variance targeting. Under Assumption 1(c) the functionH
(
ρX

)
is linear, so

E
[
logλt

]
= E[H(ρt,X)] = H(ρ̄X), whereρ̄X≡E[ρt,X]. Finally, we exploit the fact thatRankCorr[X]

is identical toRankCorr
[
η
]

by Assumption 1(a) and Theorem 5.1.6 of Nelsen (2006). So we

obtainE
[
logλt

]
= H(ρ̄X) = H(ρ̄η).

(ii) We use as our “VT estimator” the sample analog of the above expression:̂logλ = H(ρ̂η).
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Note that, since the marginal distributions ofηt are known, sample rank correlations are a linear

functions of a sample moment, see Nelsen (2006, Chapter 5) for example:

ρ̂i j,η = −3+
12
T

∑T

t=1
Fi

(
ηi,t

)
F j

(
η j,t

)
(26)

Our estimate ofE
[
logλit

]
is obtained in equation (25) as:

̂logλ = arg min
a

m̄T (a)′ m̄T (a) (27)

where m̄T (a) ≡ vech{ϕ
(
G

(
expa

))
} − ρ̂S

η

The element of̄mT corresponding to the(i, j) element of the correlation matrix is:

m̄(i, j)
T (a) =

[
ϕ
(
G

(
expa

))]
(i, j) + 3−

12
T

∑T

t=1
Fi

(
ηi,t

)
F j

(
η j,t

)
(28)

Thus ̂logλ is a standard GMM estimator forN ≥ 3.
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Figure 1:The upper panel plots the mean and 10%, 25%, 75% and 90% quantiles across the CDS
spreads for 100 U.S. firms over the period January 2006 to April 2012. The lower panel reports
the average (across firms) percent change in CDS spreads for the same time period.
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Figure 2:This figure plots the estimated factor loadings(λt) from the heterogeneous dependence
factor copula model, averaged across firms in the same industry.
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Figure 3: This figure shows the joint probability of distress (JPD), for two copula models. Both
models allow for a structural break on April 8, 2009. Distress is defined using the 99% quantile,
and we consider the probability of k=30 firms, out of 100, in distress. The sample period is January
2006 to April 2012.
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Figure 4:This figure shows the expected proportion (in percent) of firms in distress, given firm i in
distress, averaged across firms. The upper panel covers all 100 firms, and reports the mean and
cross-sectional 20% and 80% quantiles. The lower panel reports the proportion of 16 financial
firms in distress given one financial or nonfinancial firm in distress, and the proportion of 84
nonfinancial firms in distress given one financial or nonfinancial firm in distress. The sample
period is January 2006 to April 2012.
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Table 1: Simulation results
True Bias Std Median 90% 10% Diff

(90%-10%)

Panel A:Equidependence
ω 0.000 0.005 0.015 0.001 0.027 -0.003 0.030
α 0.050 0.000 0.003 0.050 0.051 0.048 0.003
β 0.980 0.002 0.004 0.980 0.989 0.979 0.010
ν−1 0.200 0.001 0.006 0.200 0.206 0.195 0.010
ψz 0.100 0.005 0.017 0.100 0.118 0.0970.021

Panel B: Blockequidependence
ω1 -0.030 0.000 0.005 -0.030 -0.025 -0.035 0.010
ω2 -0.023 -0.001 0.004 -0.024 -0.020 -0.030 0.010
ω3 -0.017 0.000 0.005 -0.017 -0.011 -0.023 0.012
ω4 -0.010 0.000 0.004 -0.011 -0.005 -0.016 0.011
ω5 -0.003 0.001 0.004 -0.002 0.004 -0.007 0.011
ω6 0.003 0.001 0.004 0.004 0.009 0.000 0.009
ω7 0.010 0.002 0.005 0.012 0.018 0.007 0.012
ω8 0.017 0.001 0.005 0.017 0.025 0.012 0.013
ω9 0.023 0.001 0.005 0.024 0.030 0.018 0.012
ω10 0.030 0.003 0.006 0.033 0.040 0.024 0.015
α 0.050 0.001 0.005 0.051 0.057 0.045 0.012
β 0.980 -0.001 0.002 0.978 0.981 0.976 0.004
ν−1 0.200 -0.005 0.008 0.196 0.202 0.184 0.018
ψz 0.100 0.004 0.025 0.103 0.138 0.0710.068

Notes: This table presents results from the simulation study described in Section 3. The internet
appendix contains results for the “heterogeneous dependence” model.

41
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 2
0:

01
 1

7 
A

pr
il 

20
16

 



ACCEPTED MANUSCRIPT

Table 2: Summary statistics for log-differences of daily CDS spreads

Mean 5% 25% Median 75% 95%

Mean 5.589 -1.634 2.559 5.529 8.521 13.817
Std dev 378.892 308.636 347.627 373.460 400.385 476.533
1st-order autocorrel 0.161 0.030 0.121 0.164 0.217 0.267
Skewness 1.087 -0.285 0.354 0.758 1.488 3.629
Kurtosis 25.531 7.717 10.286 14.557 25.911 74.843
5% -514.574 -622.282 -551.334 -509.554 -474.027 -415.651
25% -144.195 -172.319 -155.635 -145.415 -134.820 -111.993
Median -2.324 -9.045 -3.644 -0.726 0.000 0.000
75% 132.127 95.168 120.514 131.019 144.363 174.645
95% 570.510 457.775 537.093 568.331 612.769684.984

Notes: This table presents summary statistics across the 100 marginal distributions of log-
differences of daily CDS spreads measured in basis points. The columns present the mean and
quantiles from the cross-sectional distribution of the measures listed in the rows.
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Table 3: Marginal distribution parameter estimates

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

φ0,i 3.029 -3.760 0.247 3.116 5.861 10.165
φ1,i 0.005 -0.179 -0.062 0.010 0.082 0.153
φ2,i 0.025 -0.039 -0.001 0.025 0.050 0.084
φ3,i -0.002 -0.058 -0.028 -0.004 0.021 0.064
φ4,i 0.006 -0.046 -0.014 0.006 0.033 0.054
φ5,i 0.004 -0.055 -0.022 0.005 0.027 0.060
φm,i 0.387 0.163 0.303 0.372 0.480 0.638

ωi × 104 5.631 1.401 3.111 5.041 7.260 13.381
βi 0.741 0.595 0.699 0.746 0.794 0.845
αi 0.114 0.052 0.087 0.106 0.141 0.181
δi 0.022 0.000 0.000 0.000 0.042 0.086
αm,i 0.223 0.037 0.137 0.206 0.297 0.494
δm,i 0.072 0.000 0.000 0.059 0.114 0.233

νi 3.620 2.877 3.293 3.571 3.921 4.496
ψi 0.043 -0.003 0.024 0.042 0.062 0.089

# of rejections
LB test for standardized residuals 9
LB test for squared standardized residuals 2
KS test of skew t dist of standardized residuals 11

Notes: The table presents summaries of the estimated AR(5)-GJR-GARCH(1,1)-Skewt marginal
distribution models (equations (16)-(18)) estimated on log-difference of daily CDS spreads. The
columns present the mean and quantiles from the cross-sectional distribution of the parameters
listed in the rows. The bottom panel shows the number of rejections (at the 0.05 level) across
100 firms from Ljung-Box tests for serial correlation up to 10 lags. The first row is for stan-
dardized residuals of log-difference of daily CDS spreads and the second row for squared stan-
dardized residuals. The bottom panel shows the number of rejections across 100 firms from the
Kolmogorov–Smirnov test of the Skewt distribution used for the standardized residuals.
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Table 4: Model estimation results

Equidependence Block equidependence HeterogeneousDependence

Normal Factor Normal Factor Normal Factor

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

ω1→G -0.013
(0.047)

-0.027
(0.033)

0.005
(0.009)

-0.010
(0.017)

– – – – – – – –

αGAS 0.024
(0.009)

0.022
(0.003)

0.026
(0.003)

0.026
(0.003)

0.036
(0.015)

0.029
(0.001)

0.033
(0.011)

0.026
(0.010)

0.160
(0.064)

0.144
(0.062)

0.170
(0.022)

0.171
(0.015)

βGAS 0.988
(0.060)

0.847
(0.070)

0.994
(0.026)

0.907
(0.035)

0.996
(0.044)

0.976
(0.042)

0.998
(0.015)

0.992
(0.031)

0.994
(0.047)

0.975
(0.065)

0.994
(0.031)

0.982
(0.040)

ν−1
z – – 0.095

(0.025)
0.078
(0.031)

– – 0.010
(0.029)

0.010
(0.020)

– – 0.010
(0.027)

0.020
(0.021)

ν−1
ε – – 0.170

(0.009)
0.178
(0.010)

– – 0.206
(0.011)

0.190
(0.009)

– – 0.204
(0.014)

0.179
(0.010)

ψz – – -0.018
(0.049)

-0.015
(0.049)

– – 0.088
(0.093)

0.093
(0.056)

– – 0.091
(0.074)

0.124
(0.058)

logL 38,395 40,983 38,518 41,165 39,361 41,913
AIC -76,778 -81,942 -77,008 -82,290 -78,314 -83,406
BIC -76,771 -81,927 -76,991 -82,266 -78,066 -83,151

Notes: This table presents parameter estimates for two versions of the factor copula (Nor-
mal and Skewt-t), each with one of three degrees of heterogeneity of dependence (equidepen-
dence, block equidependence, and heterogeneous dependence). Standard errors, that account for
the multi-stage estimation, based on the stationary bootstrap of Politis and Romano (1994) are
presented below the estimated parameters. All models are allowed to have a structural break on
April 8, 2009 (see Section 4.4), and we denote parameters from the first and second sub-samples
as “Pre” and “Post.” The log-likelihood at the estimated parameters and the Akaike and Bayesian
Information criteria are presented in the bottom three rows. The intercept parameters (ωi) for the
block equidependence and heterogeneous dependence models are not reported to conserve space.
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Table 5: Model comparison results

Normal Factor
(
ν, ψz, ν

)
Factor

(
νz, ψz, νε

)

Static GAS Static GAS Static GAS

# param 2 6 6 10 8 12
Equi- logL 36,185 38,395 39,223 40,688 39,50840,983
dependence AIC -72,366 -76,778 -78,434 -81,356 -79,000-81,942

BIC -72,364 -76,771 -78,427 -81,344 -78,990-81,927

Block # param 10 14 14 18 16 20
equi- logL 36,477 38,518 39,441 40,799 39,75741,165
dependence AIC -72,934 -77,008 -78,854 -81,562 -79,482-82,290

BIC -72,922 -76,991 -78,837 -81,540 -79,463-82,266

# param 200 204 204 208 206 210
Heterogeneous logL 37,652 39,361 40,357 41,522 40,62841,913
dependence AIC -74,904 -78,314 -80,306 -82,628 -80,844-83,406

BIC -74,661 -78,066 -80,058 -82,375 -80,594-83,151

Notes: This table presents the log-likelihood at the estimated parameters, as well as the Akaike
and Bayesian Information criteria, for a variety of copula models. The preferred model according
to each of these criteria is highlighted in bold. Also presented is the number of estimated param-
eters; note that this accounts for the fact that we allow for a structural break in these parameters,
and so the number reported is twice as large as it would be in the absence of a break. We consider
models with three degrees of heterogeneity of dependence (equidependence, block equidepen-
dence, and heterogeneous dependence); with and without dynamics (static and GAS); and three
versions of the factor copula (Normal, Skewt-t with a common degrees of freedom parameter, and
Skewt-t with separately estimated degrees of freedom parameters).
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Table 6: Estimates of systemicrisk

2 January 2006 26 January 2009 17 April2012
EPD Firm EPD Firm EPD Firm

Most systemic 53 Marsh & McLennan 78 Lockheed Martin 94 Wal-Mart
2 50 Hewlett-Packard 77 Campbell Soup 88 Baxter Int’l
3 50 IBM 75 Marsh & McLennan 88 Walt Disney
4 49 Valero Energy 75 Baxter Int’l 87 Home Depot
5 48 Bristol-Myers Squibb 74 Goodrich 84 McDonald’s

96 3 Aetna 35 Vornado Realty 12 MetLife
97 3 Xerox 34 Gen Elec Capital 11 The GAP
98 3 Comp Sci Corp 34 Johnson Controls 11 Sallie Mae
99 3 Sallie Mae 34 Alcoa 11 Comp Sci Corp

Least systemic 2 Freeport-McMoRan 33 Sallie Mae 8 Pitney Bowes

Note: This table presents the five firms with the largest estimated expected proportion in distress
(EPD), defined in equation (21), and the five firms with the smallest EPD, for three dates in our
sample period.
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